Navy, Air Force Collaborate on Engine Testing Remotely

A Pratt & Whitney F135 engine is fired in a J-2 test cell at the Arnold Engineering Development Complex (AEDC), Arnold Air Force Base, Tenn. When the Remote Data Room at the Propulsion Systems Evaluation Facility at Naval Air Station (NAS) Patuxent River is connected to the AEDC this fall, engineers at both sites will collaborate on testing the engine. (U.S. Air Force photo)

A year in the making, engineers from the Propulsion Systems Evaluation Facility (PSEF) at Naval Air Station Patuxent River, Maryland, and engineers at the Arnold Engineering Development Complex (AEDC) at Arnold Air Force Base, Tennessee, will soon be collaborating on a first-of-its-kind endeavor.

In September, Leo Rubio, a test engineer with the Naval Air Warfare Center Aircraft Division’s (NAWCAD) PSEF at Pax River, will join forces with engineers at AEDC to run a test and analyze the data on a Pratt & Whitney F135, the engine that powers all three variants of the F-35 Lightning II. What makes this particular test unique is that Rubio will be watching and participating from the new Remote Data Room in Maryland while the other engineers, and the engine, will be 700 miles away in Tennessee.

Located inside PSEF, the Remote Data Room—which currently comprises four monitors and two keyboards—allows a test analyst at Pax River to act as a remote team member during a live engine test taking place at the AEDC and view the data being collected.

“One thing we worried about was the latency when working in real time; will there be dropouts or will we see a number of data points from a minute ago or a second ago,” said John Kelly, branch head for Test Operations and Facilities Engineering at Pax River. “But, so far, with just the few trials we’ve run, it’s milliseconds. Now that the proof of concept is real, we’re pushing forward and building an actual dedicated room with four work stations and two big screen TVs so we can see the engine running in the test cell; and we’ll do a Skype setup so we can also see each other.”

The Remote Data Room is saving time and money. In the past, if the Navy needed to help support an engine test, they would have to pay travel expenses and send personnel to AEDC.

“Even then, we wouldn’t be qualified to sit and analyze data with the test team,” Kelly said. “We’d be more of an observer, or the customer, waiting for data. But now, we’ll be more integrated; we’re one of the test team people watching with this data room.”

That’s where Rubio plays a big part, having recently completed AEDC’s Aeropropulsion Combined Test Force Basic-Level Training curriculum.

Advancing Technical Skill Sets

In 2019, Rubio was sent to the AEDC facility—which operates more than 60 aerodynamic and propulsion wind tunnels, rocket and turbine engine test cells and other specialized units—to support the Navy’s MQ-25 Stingray program and observe an altitude test for the AE3007N engine.

“The goal was to work with my counterpart at AEDC, Seth Beaman, to develop a training curriculum to get NAVAIR personnel certified as basic-level analysts,” Rubio said. “I ended up integrating myself well with the test team and taking on more of the training and serving as a test analyst during all of their air periods for this test program.”

AEDC has training standards they follow, and the engineers worked to determine what portion of those standards applied to Navy employees, whether they are present at AEDC or remotely supporting a test from PSEF, Beaman said. The curriculum the team developed will ultimately help advance the workforce and enable them to more quickly respond to critical evolving requirements of current and future programs like F-35.

“Any engineers [at Pax River] who will be coming down here or who will be remotely supporting will be going through that training program at some point,” said Beaman, a test analyst and one of 10 NAVAIR employees with the Aeropropulsion Combined Test Force who work with the Air Force at AEDC.

Improved Speed and Readiness

With the Navy’s combined interest in some of the engine testing being done at AEDC, the Remote Data Room offers NAWCAD engineers the ability to access data, not only in real time while seeing the test, but also by accessing historical data without having to call down to Tennessee for assistance.

“[In the past], there wouldn’t have been much communication between any type of testing [at AEDC] and what they were doing at Pax,” Beaman said. “If they were interested in accessing data, they maybe would’ve called a branch chief here to request it, but the lead time required gathering, analyzing and reporting the data before sharing. Now, [with the Remote Data Room connection] if Leo wants to access AEDC data, he just has to log in and he’ll have access to plot any type of historical data he’d need to reference.”

In a move benefitting both sides, the analysis group in Tennessee assigned a certain objective, or portion of the upcoming F135 test, to Rubio, who will analyze fan duct heat exchanger effectiveness.

“We have certain objectives we’re trying to accomplish, and with Leo responsible for an objective, it will give him the work he needs to gain experience while [simultaneously] offloading a little of the work from the analysis force here at AEDC,” Beaman said. “That gives us time to do a more thorough analysis on the remaining objectives. Ultimately, this will yield more quality and quicker post-test reports.”

In fact, the biggest winners in all of this may be the engineers themselves.

“This is a remarkable opportunity for engineers at Pax,” Rubio said. “We primarily deal with turboshaft engines in PSEF whereas AEDC deals with turbofan and turbojet engines. This allows our folks to get a greater variety of testing experience and encourages more of a collaborative effort. Also, rather than having data forwarded to our teams here for an engine test they may have some stake in, they can access live test data and perform their own analysis much faster and with some elaborate tools that AEDC engineers have at their disposal.”

Kelly also noted another plus to engineers comes in their role as the voice of the Navy when talking to original engine manufacturers (OEM), such as Pratt & Whitney, Rolls Royce or GE.

“One of the best ways to get a PSEF engineer knowledgeable on an engine is through doing the testing where you can really see how it operates—the good stuff and the faults,” Kelly said. “It’s a better in-depth understanding of the engine versus just studying what the engine is supposed to do. So, if we have engineers going through this training and learning what the engine is, they’ll be much more knowledgeable at their job and work better with the OEMs.”

“It’s definitely like a ‘Field of Dreams’ thing: ‘build it and they will come,’” Kelly said. “We know as soon as we get it going, everyone will be saying, ‘Really? I want to see this.’ I’m expecting it’ll keep building the more we use it.”

Even as the team starts up the Remote Data Room, they’re certain it will generate interest beyond their own division.

Donna Cipolloni is editor of the Tester newspaper and supports NAS Patuxent River Public Affairs

Navy Test Engineers to Regain Hands-on Experience

Leo Rubio, seated, Propulsion & Power test engineer, shows John Kelly, Test Operations and Facilities Engineering branch head, data plots from historical engine data acquired at the AEDC using the Remote Data Room set up at NAS Patuxent River. (U.S. Navy photo by Adam Skoczylas)

The idea of the Remote Data Room was kicked into action when John Kelly, branch head for Test Operations and Facilities Engineering, arrived at the Propulsion Systems Evaluation Facility (PSEF) a couple years ago. He was tasked by his former boss Tony Miguelez, who is now the Fleet Support Team Executive/Chief Engineer, Fleet Readiness Center Commands, to bring the room to life.

“It was his concept,” Kelly said. “Miguelez was from the generation who came through [Naval Air Warfare Center] Trenton and did a lot of testing. He came up through the ranks and I think he recognized the value of the knowledge that experience gives a test engineer.”

Following a Base Realignment and Closure Act (BRAC) decision that shuttered the Trenton facility in the late 1990s, DOD decided all turbo shaft and turbo prop work would come to the Navy at Pax River, while turbo jet work went to the Air Force at Arnold Air Force Base, Tennessee.

Tom Weiss, division head for Propulsion and Power’s Test Methods and Facilities Division, said when Propulsion and Power lost the ability to do altitude testing in house as part of that BRAC, new engineers coming aboard lost the ability to look at data, make decisions based on the data and really understand the inner workings of an engine.

“Anybody who’s an engineer who has spent part of their career doing flight test, ground test or anything where you’ve really had your hands into it understands the product much better than by just watching what others are doing,” Weiss said. “With the Remote Data Room, I think we’ll get that back.”

Weiss also noted with AEDC’s shift from contractors toward the government workforce taking over data analysis in reporting, the need for a highly trained government workforce has increased.

“As need continues to grow, AEDC will not be able to staff up because of financial limitations within the Air Force,” Weiss said. “This Remote Data Room will come in to play with the Navy augmenting their ability to conduct these tests on time and within budget. This is a great opportunity for both workforces to grow technically  and collaborate.” — Donna Cipolloni